Graded quantum cluster algebras of infinite rank as colimits
نویسندگان
چکیده
منابع مشابه
Graded Quantum Cluster Algebras of Infinite Rank as Colimits
We provide a graded and quantum version of the category of rooted cluster algebras introduced by Assem, Dupont and Schiffler and show that every graded quantum cluster algebra of infinite rank can be written as a colimit of graded quantum cluster algebras of finite rank. As an application, for each k we construct a graded quantum infinite Grassmannian admitting a cluster algebra structure, exte...
متن کاملCluster algebras of infinite rank
Holm and Jørgensen have shown the existence of a cluster structure on a certain category D that shares many properties with finite type A cluster categories and that can be fruitfully considered as an infinite analogue of these. In this work we determine fully the combinatorics of this cluster structure and show that these are the cluster combinatorics of cluster algebras of infinite rank. That...
متن کاملGraded quantum cluster algebras and an application to quantum Grassmannians
We introduce a framework for Z-gradings on cluster algebras (and their quantum analogues) that are compatible with mutation. To do this, one chooses the degrees of the (quantum) cluster variables in an initial seed subject to a compatibility with the initial exchange matrix, and then one extends this to all cluster variables by mutation. The resulting grading has the property that every (quantu...
متن کاملGraded cluster algebras
In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradin...
متن کامل- Algebras of Infinite Real Rank
We introduce the notion of weakly (strongly) infinite real rank for unital C∗-algebras. It is shown that a compact space X is weakly (strongly) infine-dimensional if and only if C(X) has weakly (strongly) infinite real rank. Some other properties of this concept are also investigated. In particular, we show that the group C∗-algebra C∗ (F∞) of the free group on countable number of generators ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2018
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2017.12.014